Thank You Sponsors!

CANCOPPAS.COM

CBAUTOMATION.COM

CGIS.CA

CONVALPSI.COM

DAVISCONTROLS.COM

EVERESTAUTOMATION.COM

FRANKLINEMPIRE.COM

HCS1.COM

MAC-WELD.COM

SWAGELOK.COM

THERMO-KINETICS.COM

THERMON.COM

VANKO.NET

VERONICS.COM

WAJAX.COM

WESTECH-IND.COM

WIKA.CA

PID Power System Stabilizer for Damping Low Frequency Oscillations in Power Systems [technical]

The post PID Power System Stabilizer for Damping Low Frequency Oscillations in Power Systems [technical] first appeared on the ISA Interchange blog site.

This post is an excerpt from the journal ISA Transactions. All ISA Transactions articles are free to ISA members, or can be purchased from Elsevier Press.

Abstract: This paper explores a two-level control strategy by blending a local controller with a centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favorably compared with some controllers prevalent in the literature.

Free Bonus! To read the full version of this ISA Transactions article, click here.

Enjoy this technical resource article? Join ISA and get free access to all ISA Transactions articles as well as a wealth of other technical content, plus professional networking and discounts on technical training, books, conferences, and professional certification.

Click here to join ISA … learn, advance, succeed!

 

 

2006-2019 Elsevier Science Ltd. All rights reserved.

 

 

 



Source: ISA News