Thank You Sponsors!

AVENSYS.COM

CANCOPPAS.COM

DAVISCONTROLS.COM

ENDRESS.COM

EVERESTAUTOMATION.COM

FRANKLINEMPIRE.COM

HCS77.COM

MAC-WELD.COM

PEP-PETRO.COM

SPSSALES.COM

SRPCONTROL.COM

SUMMIT-INSTRUMENT.COM

WESTECH-IND.COM

VERONICS.COM

WAJAX.COM

WIKA.CA

AutoQuiz: What Is the Cause of Cavitation in a Liquid Flow Stream?

The post AutoQuiz: What Is the Cause of Cavitation in a Liquid Flow Stream? first appeared on the ISA Interchange blog site.

AutoQuiz is edited by Joel Don, ISA’s social media community manager.

 

Today’s automation industry quiz question comes from the ISA Certified Automation Professional certification program. ISA CAP certification provides a non-biased, third-party, objective assessment and confirmation of an automation professional’s skills. The CAP exam is focused on direction, definition, design, development/application, deployment, documentation, and support of systems, software, and equipment used in control systems, manufacturing information systems, systems integration, and operational consulting. Click this link for more information about the CAP program.

 

 

As a liquid flows through the restriction of the control valve trim, the pressure drops and then recovers to a fraction (<1.0) of the upstream pressure. A common problem in the application of control valves is cavitation, which can cause surface damage to the wetted surfaces of the control valve or connecting pipe. Cavitation will occur in a liquid flow stream, like the one described above, when:

a) the fluid pressure remains constant across the trim of the control valve
b) the fluid pressure drops below the liquid’s vapor pressure and the vapor pressure is above the outlet pressure
c) the fluid pressure drops below the liquid’s vapor pressure and the vapor pressure is below the outlet pressured
d) the fluid viscosity decreases through the control valve trim to the point of cavitation
e) none of the above

<span class="collapseomatic " id="id3033" tabindex="0" title="Click Here to Reveal the Answer” >Click Here to Reveal the Answer

 

Answer A cannot be correct since cavitation cannot occur without a change in the pressure profile through the valve.

Answer B is the definition of flashing, which will also occur when the fluid pressure drops below the liquid’s vapor pressure, but because the vapor pressure is above the outlet pressure, it remains as a gas into the downstream piping. This can also lead to valve or pipe damage and noise issues.

Answer D is incorrect since there is no direct correlation between viscosity and cavitation.

The correct answer is C, the fluid pressure drops below the liquid’s vapor pressure and the vapor pressure is below the outlet pressure.  At the point where the fluid drops below the liquid’s vapor pressure, a gas is formed.  As the fluid moves downstream to where the fluid pressure is greater than the vapor pressure, it “collapses” back into a liquid, causing a shock wave that can damage interior valve and piping surfaces.  This phenomenon is called cavitation.

Image Credit: Samson, Rencor via Slideshare

 


Source: ISA News